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The intermolecular hydroamination of unactivated alkenes
remains an important, unsolved challenge in catalysis.1 This
transformation has been realized with alkali metal amides,2 lan-
thanide metallocene complexes,3 or acidic zeolites,4 but these
approaches suffer from a number of limitations, most notably poor
functional group compatibility. Ru(II),5 Rh(III),6 and Pt(II)7

complexes catalyze the hydroamination of ethylene and, in one case,
1-hexene8 with carboxamides or alkyl or aryl amines, but these
transformations require forcing conditions and are of extremely
limited scope.9 Although electrophilic gold(I)-10 and platinum(II)
triflate11 complexes have been reported to catalyze the intermo-
lecular hydroamination of unactivated alkenes with sulfonamides,
these transformations are catalyzed with equal or greater efficiency
by Brønsted acids and the metal-catalyzed reactions display behavior
consistent with Brønsted acid catalysis.12-14 Given the challenges
associated with the intermolecular hydroamination of unactivated
alkenes, it is not surprising that the enantioselective intermolecular
hydroamination of unactivated alkenes remains unknown.15,16 Here
we report the Markovnikov-selective gold(I)-catalyzed hydroami-
nation of ethylene and 1-alkenes with cyclic ureas and the
unprecedented enantioselective hydroamination of unactivated
1-alkenes with up to 78% ee.

We have recently reported the room temperature intramolecular
hydroamination of γ- and δ-alkenyl ureas catalyzed by a mixture
of a gold(I) N-heterocyclic carbene (NHC) complex and AgOTf.17

The mild reaction conditions and the absence of an acid-catalyzed
reaction pathway17 pointed to the potential development of a
corresponding intermolecular process. However, attempts to realize
the hydroamination of ethylene with acyclic ureas catalyzed by gold
NHC complexes were uniformly unsuccessful. Conversely, cyclic
ureas, employed in combination with a gold o-biphenyl phosphine
precatalyst led to efficient hydroamination of ethylene. As an
example, treatment of 1-methyl-imidazolidin-2-one (1) (0.4 M) with
ethylene (120 psi) and a catalytic 1:1 mixture of (2a)AuCl [2a )
P(t-Bu)2o-biphenyl] and AgOTf (5 mol %) in dioxane at 100 °C
for 20 h led to isolation of 1-ethyl-3-methyl-imidazolidin-2-one (3)
in 99% yield (Table 1, entry 1). In addition to 1, a number of cyclic
ureas and 2-oxazolidinone reacted with ethylene at 100 °C to give
the corresponding N-ethyl derivatives in good yield (Table 1, entries
5, 6, 7, 10).18

Extension of gold(I)-catalyzed hydroamination to include 1-alk-
enes was encouraging but also revealed the limitations of the
(2a)AuCl/AgOTf catalyst system. Gold(I)-catalyzed reaction of
propene or 1-butene with cyclic ureas at 100 °C led to Markovnikov
hydroamination in good yield with high regioselectivity, but an
extended reaction time and/or higher catalyst loading was required
(Table 1, entries 2, 3, 8, 9, 11) and the method was ineffective for
the hydroamination of 1-octene (Table 1, entry 4).

Continued optimization of gold(I)-catalyzed intermolecular hy-
droamination (Table S1) revealed that employment of AgSbF6 as
cocatalyst in combination with either (2a)AuCl or (2b)AuCl [2b

) 2-di-tert-butylphosphino-1,1′-binaphthyl] in dioxane led to
efficient hydroamination of ethylene and 1-alkenes with 1 (Table
2). Ethylene reacted with 1 under surprisingly mild conditions (60
psi, 60 °C, 24 h) to form 3 in 99% isolated yield (Table 2, entry
1). Likewise, gold(I)-catalyzed reaction of 1 with propene, 1-butene,

Table 1. Intermolecular Hydroamination of Alkenes (120 psi) with
Cyclic Ureas Catalyzed by a Mixture of (2a)AuCl (5 mol %) and
AgOTf (5 mol %) in Dioxane at 100 °C

a Isolated yield of >95% purity. b Catalyst loading ) 10 mol %. c 1H
NMR yield. 1-Octene loading ) 10 equiv. d dr ) 1:1.

Table 2. Intermolecular Hydroamination of Alkenes with 1 (0.4 M)
Catalyzed by a Mixture of (L)AuCl (5 mol %) (L ) 2a, 2b) and
AgSbF6 (5 mol %) in Dioxane at 100 °C

a Yield of isolated, regiochemically pure material of >95% chemical
purity. b Reaction temperature ) 60 °C. c Catalyst loading ) 10 mol %.
d Single diastereomer formed, relative configuration not determined.
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or 1-octene was complete within 24 h to form the corresponding
Markovnikov hydroamination products in >95% yield as a single
regioisomer (Table 2, entries 2-4).18 Gold(I)-catalyzed intermo-
lecular hydroamination was also effective for 1-alkenes that
contained a distal hydroxyl, benzyloxy, carboxylic acid, or car-
boxylic ester moiety (Table 2, entries 5-8). Styrene, isobutylene,
and norbornene also underwent gold-catalyzed hydroamination with
1, albeit with diminished efficiency (Table 2, entries 9-11).
Unstrained internal alkenes and R-substituted 1-alkenes failed to
undergo efficient gold(I)-catalyzed intermolecular hydroamination
under these conditions.

The efficient and highly regioselective hydroamination of un-
activated 1-alkenes catalyzed by gold(I) phosphine complexes
supported the feasibility of enantioselective intermolecular hy-
droamination. Indeed, a screen of enantiomerically pure bis(gold)
phosphine complexes and achiral silver salts (Tables S2 and S3)
led to identification of [(S)-4](AuCl)2 [(S)-4 ) (S)-3,5-t-Bu-4-
MeO-MeOBIPHEP] in combination with AgOTf as an effective
catalyst system for the enantioselective hydroamination of 1-alkenes
with imidazolidin-2-ones (Table 3).19 For example, reaction of 1
with 1-octene (60 equiv) catalyzed by a mixture of [(S)-4](AuCl)2

(2.5 mol %) and AgOTf (5 mol %) in m-xylene at 100 °C for 48 h
led to the isolation of 1-methyl-3-(octan-2-yl)imidazolidin-2-one
in 86% yield with 76% ee (Table 3, entry 1);18 lower octene loading
led to diminished enantioselectivity. A number of 1-substituted
imidazolidin-2-ones reacted with 1-alkenes in the presence of [(S)-
4](AuCl)2/AgOTf to form the corresponding Markovnikov hy-
droamination products in good yield with 71-78% ee (Table 3,
entries 2-6).

In summary, we have developed a mild and efficient gold(I)-
catalyzed protocol for the intermolecular hydroamination of ethylene
and unactivated 1-alkenes with cyclic ureas, which proceeds at or
below 100 °C with high Markovnikov regioselectivity. We have
extended this methodology to include the unprecedented enanti-
oselective hydroamination of unactivated 1-alkenes in good yield
with up to 78% ee. We continue to work toward the development

of more general and more efficient methods for the intermolecular
enantioselective hydroamination of unactivated alkenes.
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Table 3. Enantioselective Intermolecular Hydroamination of
1-Alkenes (60 equiv) with Imidazolidin-2-ones Catalyzed by a
Mixture of [(S)-4](AuCl)2 (2.5 mol %) and AgOTf (5 mol %) in
m-Xylene at 100 °C for 48 h

a Yield of isolated, regiochemically pure material of >95% chemical
purity. b Enantiopurity determined by HPLC analysis employing chiral
stationary phase.
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